

Lewatit® S 2528 относится к группе сильнокислотных макропористых катионитов на основе сополимера стирола- дивинилбензола с повышенной степенью сшивки. Гранулы продукта имеют сферическую форму и специальный гранулометрический состав, что позволяет успешно использовать смолу Lewatit S 2528 в следующих технологиях:

- » Lewatit® WS системы (зажатый слой),
- » Lewatit® VWS системы (комбинированный зажатый слой),
- » Стандартные прямоточные системы.

Благодаря высокой обменной емкости, хорошей осмотической и химической стабильности (особенно в отношении окислителей), в H-форме **Lewatit[®] S 2528** рекомендуется к использованию для:

- » умягчение (декатионирование) растворов органических продуктов, таких как тростникового и свекловичного сахаров, крахмала, глицерина, желатина, сыворотки и т.д.,
- » экстракция аминокислот (например из мелассы) в натриевой форме,
- » умягчение очищенных сахарных соков, например в системах типа "Gryllus",
- » удаление катионов щелочноземельных металлов из бриллиантового зеленого, например в процессах "Quentin".

Макропористая структура Lewatit® S 2528 позволяет адсорбировать гидрофильные высокомолекулярные органические соединения с положительным зарядом. Такие органические субстанции как, например, красители, могут быть легко десорбированы при регенерации раствором щелочи.

Lewatit® S 2528 полностью соответствует Немецкому законодательству для пищевых производств и положению FDA за номером FCN 21 CFR 173.25 (a).

Lewatit S 2528 полностью соответствует Европейской резолюции ResAP (2004)3 (бывшая резолюция AP (97)1) в отношении общего органического углерода (TOC) по тестам AFNOR T 90-601.

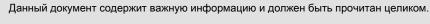
При использовании **Lewatit®** S 2528 для подготовки питьевой воды и вышеперечисленных водных растворов, особое внимание должно быть уделено первым циклам работы новой смолы. Следуйте, пожалуйста, рекомендованным в данной спецификации условиям запуска в работу.

Особые свойства данного продукта могут быть использованы оптимально лишь в том случае, если технология и конструкция фильтра соответствуют современному уровню. Более подробные консультации по данному вопросу можно получить непосредственно в отделе Ионообменных смол компании Ланксесс.

Данный документ содержит важную информацию и должен быть прочитан целиком.

Редакция: 2011-10-13

Общее описание


Ионная форма при	Na+
поставке	
Функциональная группа	сульфокислота
Матрица	стирол- дивинилбензол
Структура	макропористая
Внешний вид	бежево- серый,
	непрозрачный

Физико-химические свойства

		метрическая система				
Общая обменная емкость*		минимум экв/л	1,75			
Коэффициент однородности*		макс.		1,6		
Размер гранул*	> 90 %	ММ	0,4	-	1,2 5	
Эффективный размер гранул*		ММ	0,5 5	(+/-	0,0 5)
Насыпная плотность	(+/- 5 %)	г/д		760		
Плотность		примерно г/мл		1,27		
Содержание воды		вес. %	45	-	50	
Дыхательная разность	Na⁺> H⁺	макс. об. %		7		
Стабильность	в диапазоне рН		0	-	14	
Сохранность	продукта	максимум лет		2		
Сохранность	в диапазоне температур	°C	-20	-	40	

^{*} Являются данными спецификации. Подлежат постоянному контролю.

Анализ следовых количеств элементов

Редакция: 2011-10-13

Рекомендуемые условия применения*

		метрическая система				
Рабочая температура		макс. °С	120			
Рабочий диапазон рН				0	- 1	4
Высота слоя		мин. Мм	800			
Коэффициен гидравлического сопротивления	(15 °C)	прим. кПа*ч/м²	1,1			
Падение давления		макс. кПа	250			
Линейная скорость	при насыщении	макс. м/ч			-	
Линейная скорость	при обратной промывке (20 °C)	прим. м/ч	14 - 18			
Расширение слоя	(20 °С, на м/ч)	прим. об. %	3,5			
Пространство	для взрыхления (внешней/ внутренней)	об. %	80 - 100			
Регенерант			HCI	H ₂ S	SO ₄	NaCl
Противоточная регенерация	уровень	прим. г/л	HCI H ₂ S		60 100)
			O₄ NaCl		100)
Противоточная регенерация	А2 для противотока	вес. %	HCI H ₂ S O ₄	4 1,5	-/	6 3**
Прямоток	уровень	прим. г/л	HCI H ₂ S O ₄	8	100 150)
			NaCl		200)
Прямоточная регенерация	концентрация	прим. вес. %	HCI H ₂ S	4 1,5	- /	6 3**
			O₄ NaCl	8	-	10
Линейная скорость	регенерация	прим. м/ч	HCI H ₂ S O ₄	10	5 -	20
			NaČl		5	
Линейная скорость	промывка	прим. м/ч	5			
Потребность в промывочной воде	быстро / медленно	прим. об. слоя	2,5			

^{*} рекомендуемые условия использования относятся к использованию продукта при нормальных условиях работы. Они основаны на испытаниях, проводимых на опытных установках, и данных, полученных при промышленном применении. Тем не менее, требуются дополнительные расчеты необходимых объемов смолы для определенных параметров ионного обмена.

Данный документ содержит важную информацию и должен быть прочитан целиком.

Редакция: 2011-10-13

Их можно найти в нашем Техническом Информационном Бюллетене.

** Прогрессивная регенерация

Данный документ содержит важную информацию и должен быть прочитан целиком.

Редакция: 2011-10-13

Дополнительная информация и правила

Техника безопасности

Сильные окислители, такие как азотная кислота, могут вызвать бурную реакцию при контакте с ионообменной смолой.

Токсичность

Учитывать данные листа безопасности. Он содержит информацию об обозначениях, транспортировке и хранении, а также информацию об обращении с данным продуктом и данные по экологии.

Утилизация

В Европейском Сообществе утилизация ионообменных смол происходит согласно Европейской номенклатуре отходов, которая доступна на интернет-сайте Европейского сообщества.

Хранение

Рекомендуется хранить ионообменные смолы в сухом месте при температуре выше нуля, под крышей и без прямого воздействия солнечных лучей. Для предотвращения термического и осмотического шока замороженные ионнообменные смолы должны быть медленно разморожены при комнатной температуре

Приведенная выше информация, а также наши письменные, устные и основанные на экспериментах консультации по технологии применения, осуществляются самым добросовестным образом, но считаются лишь рекомендациями, не имеющими обязательной силы, также и в отношении возможных охраняемых прав третьих лиц. Консультации не освобождают Вас от собственной проверки наших консультационных рекомендаций и наших продуктов на их пригодность для предусмотренных технологических процессов и целей. Применение, использование и переработка наших продуктов, а также продуктов, изготовленных Вами на основании наших консультаций по технологии применения лежат за пределами наших возможностей контроля и поэтому находятся исключительно в сфере Вашей ответственности. Продажа продуктов осуществляется в соответствии с нашими ""Общими условиями продажи и поставки"". Вся информация и техническая поддержка предоставляется без гарантий и может быть изменена без предупреждений. Вы принимаете и освобождаете нас от ответственности в правонарушениях, контрактах и др., связанных с использованием нашей продукции, технической поддержки или предоставлении информации. Любое утверждение, не содержащееся здесь, не авторизовано и не связано с нами. Ничего, из приведенного здесь не может быть истолковано как рекомендация к использованию любого продукта в противоречии с патентом, связанным с материалом или его использованием. Никакой лицензии не подразумевается или она предоставляется при заявлении любого патента.

Lanxess Deutschland GmbH BU ION D-51369 Leverkusen

lewatit@lanxess.com

www.lewatit.com www.lanxess.com

Данный документ содержит важную информацию и должен быть прочитан целиком.

Редакция: 2011-10-13

